Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production

نویسندگان

  • Xiang Guo
  • Adnan Cavka
  • Leif J Jönsson
  • Feng Hong
چکیده

BACKGROUND Bacterial cellulose (BC) is a nanostructured material with unique properties and wide applicability. In order to decrease the production cost of bacterial cellulose, lignocellulose-based media have considerable potential as alternative cost-effective feedstocks. However, pretreatment and enzymatic hydrolysis of lignocellulose to sugars also generate fermentation inhibitors. Detoxification of lignocellulosic hydrolysates is needed to achieve efficient production of BC. In this investigation, different methods for detoxification of spruce hydrolysate prior to production of BC were compared with respect to effects on potential inhibitors and fermentable sugars, sugar consumption, BC yield, and cell viability. The objectives were to identify efficient detoxification methods and to achieve a better understanding of the role played by different inhibitors in lignocellulosic hydrolysates. RESULTS In a first series of experiments, the detoxification methods investigated included treatments with activated charcoal, alkali [sodium hydroxide, calcium hydroxide (overliming), and ammonium hydroxide], anion and cation ion-exchange resins, and reducing agents (sodium sulfite and sodium dithionite). A second series of detoxification experiments included enzymatic treatments (laccase and peroxidase). The potential inhibitors studied included aliphatic acids, furan aldehydes, and phenolic compounds. The best effects in the first series of detoxification experiments were achieved with activated charcoal and anion exchanger. After detoxification with activated charcoal the BC yield was 8.2 g/L, while it was 7.5 g/L in a reference medium without inhibitors. Treatments with anion exchanger at pH 10 and pH 5.5 gave a BC yield of 7.9 g/L and 6.3 g/L, respectively. The first series of experiments suggested that there was a relationship between the BC yield and phenolic inhibitors. Therefore, the second series of detoxification experiments focused on treatments with phenol-oxidizing enzymes. The BC yield in the laccase-detoxified hydrolysate reached 5.0-5.5 g/L after 14 days cultivation, which demonstrated the important inhibitory role played by phenolic compounds. CONCLUSIONS The investigation shows that detoxification methods that efficiently remove phenolics benefit bacterial growth and BC production. Negative effects of salts could not be excluded and the osmotolerance of Gluconacetobacter xylinus needs to be further investigated in the future. Combinations of detoxification methods that efficiently decrease the concentration of inhibitors remain as an interesting option.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissolution and Regeneration of the Produced Nano Bacterial Cellulose of Food Industries Wastewaters by a Cost-Benefit Method

This paper applied a simple and cost-benefit method for the production of regenerated bacterial cellulose. The inexpensive production of cellulose with complex media derived from wastewater from food industries such as molasses adds a lot of contaminants to the produced bacterial cellulose, which puts a lot of challenges in cellulose purification. Therefore, the present study aimed...

متن کامل

Detoxification of Corncob Acid Hydrolysate with SAA Pretreatment and Xylitol Production by Immobilized Candida tropicalis

Xylitol fermentation production from corncob acid hydrolysate has become an attractive and promising process. However, corncob acid hydrolysate cannot be directly used as fermentation substrate owing to various inhibitors. In this work, soaking in aqueous ammonia (SAA) pretreatment was employed to reduce the inhibitors in acid hydrolysate. After detoxification, the corncob acid hydrolysate was ...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

The effect of nanoparticles and organic acids on bacterial nano- cellulose synthesis, crystalline structure and water holding capacity

Bacterial cellulose is a biological polymer with a variety of extraordinary properties which make it a functional material for different industrial fields. This work aimed at monitoring the effects of three different organic acids and nanoparticles on the production, water holding capacity and structural characteristics of bacterial cellulose. Different concentrations of organic acids and nanop...

متن کامل

Biotechnological Production of Cellulose by Gluconacetobacter Xylinus from Agricultural Waste

The purpose of this study was to utilize low quality date syrup, a rich and available source of nutrient in Iran, for the production of bacterial cellulose using Gluconacetobacter xylinus. Static batch fermentationfor the purpose of cellulose production by G. xylinus (PTCC, 1734) was studied using low quality date syrupand sucrose solution (Bx. 10%) as fermentation media at 28°C. Re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013